Effect of surface hydroxyl groups on heat capacity of mesoporous silica - Supplementary material -

Michal Marszewski,¹ Danielle Butts,² Esther Lan,² Yan Yan,³ Sophia C. King,³ Patricia E. McNeil,² Tiphaine Galy,¹ Bruce Dunn,² Sarah H. Tolbert,^{2,3} Yongjie Hu,¹ Laurent Pilon^{1,a)}

 ¹Mechanical and Aerospace Engineering Department, University of California, Los Angeles, Los Angeles, California 90095, USA
 ²Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, USA
 ³Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, California 90095, USA
 ^aAuthor to whom correspondence should be addressed. Electronic mail: pilon@seas.ucla.edu.

Nomenclature

specific heat capacity (J $g^{-1} K^{-1}$)
average pore width (nm)
thermal effusivity (J m ^{-2} K ^{-1} s ^{$-1/2$})
thermal conductivity (W m ^{-1} K ^{-1})
mass (g)
number of moles (mol)
molar mass of hydroxyl group ($M_{OH} = 17 \text{ g mol}^{-1}$)
relative pressure
specific surface area $(m^2 g^{-1})$
total pore volume (cm 3 g $^{-1}$)
weight fraction

Greek symbols

α	thermal diffusivity $(m^2 s^{-1})$
ϕ	porosity or air volume fraction
ρc_p	volumetric heat capacity (J $m^{-3} K^{-1}$)
ρ	density (g cm ⁻³)
σ_{OH}	surface density of hydroxyl groups (mol m ⁻²)

Subscripts and superscripts

_	
air	refers to air
eff	refers to effective
H ₂ O	refers to water
OH	refers to OH groups
SiO ₂	refers to silica
total	refers to entire sample

Porosity and specific area measurements

Low-temperature nitrogen adsorption–desorption isotherms were measured at –196 °C using a surface area and porosity analyzers ASAP 2010 and TriStar II 3020 (Micromeritics Instrument Corp., Norcross, GA, USA). To do so, each sample was degassed in vacuum at 150–200 °C for 20–24 h prior to measurements. The specific surface area S_a was calculated using the Brunauer– Emmett–Teller method¹ (BET) based on low-temperature nitrogen adsorption data in the relative pressure p/p_0 range 0.05–0.2, assuming the cross-sectional area of a nitrogen molecule to be 0.162 nm².² The total pore volume V_t was calculated by converting the volume of nitrogen adsorbed at a relative pressure $p/p_0 = 0.98$ to the volume of liquid nitrogen assuming the density conversion factor of 0.0015468.^{2,3} Then, the porosity ϕ was calculated from the total pore volume V_t according to³

$$\phi = (V_t \,\rho_{SiO_2})/(1 + V_t \,\rho_{SiO_2}). \tag{S1}$$

The micropore volume V_{mi} was calculated using the α_s comparative method³ in the reduced adsorption α_s range 0.8–1.1 (S1, S3–S8, S10, and S12) or 0.4–0.8 (S2, S9, and S11) and using macroporous silica LiChrospher Si-1000 as a reference.⁴ The reduced adsorption α_s was defined as³

$$\alpha_s = a_{ref} / a_{ref,0.4},\tag{S2}$$

where a_{ref} is the amount of nitrogen adsorbed on the reference material surface at a given relative pressure p/p_0 and $a_{ref,0.4}$ is the amount of nitrogen adsorbed at the reference material surface at the relative pressure $p/p_0 = 0.4$. In addition, the average pore width \bar{d}_p was calculated based on the pore size distribution determined using the Kruk–Jaroniec–Sayari (KJS) method⁵ based on the Barrett–Joyner–Halenda (BJH) method⁶ using (i) the adsorption branch of nitrogen isotherm, (ii) the modified Kelvin equation⁵ calibrated for cylindrical pores up to 19 nm in diameter, and (iii) the statistical film thickness curve derived from the nitrogen adsorption isotherm measured for macroporous silica LiChrospher Si-1000.⁴ Note that for cylindrical pores the specific surface area S_a relates to the average pore width \bar{d}_p according to³

$$S_a = \frac{4V_t}{\bar{d}_p}.$$
(S3)

Specific heat measurements

The effective specific heat capacity $c_{p,eff}$ of all samples S1–S12 was measured at 25 °C using a DSC 8000 heat-flow differential scanning calorimeter (PerkinElmer Inc., Waltham, MA, USA) and a step-scan option. First, the effective specific heat capacity $c_{p,eff,as}$ of the as-synthesized sample was measured. The as-synthesized samples were allowed to (i) equilibrate the amount of physically-adsorbed water and (ii) regenerate the surface OH groups before the measurement. Second, the sample was degassed at 160 °C in the calorimeter under dry nitrogen flow to ensure that the physically adsorbed water was removed but the surface OH groups remained.⁷ Next, the apparent specific heat capacity $c_{p,app,deg}$ of the degassed sample (calculated per original mass of the sample) was measured. Then, the water weight fraction w_{H_2O} present in the as-synthesized sample was calculated as

$$w_{H_20} = (c_{p,eff,as} - c_{p,eff,deg})/c_{p,H_20},$$
(S4)

where c_{p,H_2O} is the specific heat capacity of water taken as $c_{p,H_2O} = 4.184$ J g⁻¹ K⁻¹. Finally, the effective specific heat capacity $c_{p,eff}$ of mesoporous silica sample was calculated by correcting the apparent specific heat capacity $c_{p,app,deg}$ of the degassed sample for the mass lost due to water removal as

$$c_{p,eff} = c_{p,app,deg} / (1 - w_{H_20}),$$
 (S5)

Each measurement was corrected with a baseline run and for the mass difference between the sample pan and the reference pan.

FTIR Transmission spectra

Fourier-transform infrared (FTIR) transmission spectra were collected on a FT/IR-6100 spectrometer (Jasco, Germany) in a 4000–400 cm⁻¹ range with a 4 cm⁻¹ spectral resolution. Each sample was ground, mixed with ground KBr, and pressed into a pellet before the transmission measurement. The absorption band at ca. 2350 cm⁻¹ corresponding to atmospheric CO₂ was removed for clarity.

FIG. S1. Fourier-transform infrared transmittance spectra of mesoporous nanoparticle-based silica samples S1 and S2, mesoporous sol-gel silica samples S3 and S4, and mesoporous ambigel silica samples S10 and S12. Patterns shifted upwards for clarity by 0, 100, 200, 300, 400, and 500 %, respectively.

All FTIR spectra of representative nanoparticle-based, sol-gel, and ambigel mesoporous silica samples (Fig. S1) featured a broad absorption band between 3700 and 3000 cm⁻¹ corresponding to O–H stretching vibrations of OH surface groups and OH groups in water physically adsorbed on the materials' surface.^{8–10} In addition, all samples featured an absorption band at 1630–1620 cm⁻¹ corresponding to H–O–H bending vibrations of physisorbed water.^{8–10} Multiple absorption bands at 1200–1000, 970–940, 800, 580–550, and 470–450 cm⁻¹ were all ascribed to vibrations of SiO₂

network: Si–O–Si asymmetric stretching, Si–OH in-plane stretching, Si–O symmetric stretching, Si–O stretching, and O–Si–O bending vibrations, respectively.^{8–10} Finally, no absorption bands in the range 3000–1350 cm⁻¹, corresponding to organic molecules, were detected. Therefore, the prepared samples did not contain organic residues that could otherwise affect the measured effective specific heat capacity $c_{p.eff}$.

Powder X-ray diffraction

In addition, powder X-ray diffractograms were collected on a MiniFlex II powder X-ray diffractometer (Rigaku, The Woodlands, TX, USA) using Cu K_{α} radiation (30 kV, 15 mA, λ = 1.5406 Å). All scans were taken in the 2 θ range 10.00°–80.00° with a 0.02° step size. Fig. S2 (on page S6) shows X-ray diffraction patterns of the same selected mesoporous silica samples. It indicates that the diffraction patterns were featureless except for a broad hump between 2 θ equals to 10° and 40°, indicating that the mesoporous SiO₂ samples were amorphous.¹¹

Reference

- ¹ S. Brunauer, P.H. Emmett, and E. Teller, J. Am. Chem. Soc. **60**, 309 (1938).
- ² M. Kruk and M. Jaroniec, Chem. Mater. **13**, 3169 (2001).
- ³ J. Rouquerol, F. Rouquerol, P. Llewellyn, G. Maurin, and K.S.W. Sing, Adsorption by Powders and Porous Solids: Principles, Methodology and Applications, 2nd Edition (Academic Press, Amsterdam, 2013).
- ⁴ M. Jaroniec, M. Kruk, and J.P. Olivier, Langmuir 15, 5410 (1999).
- ⁵ M. Kruk, M. Jaroniec, and A. Sayari, Langmuir 13, 6267 (1997).
- ⁶ E.P. Barrett, L.G. Joyner, and P.P. Halenda, J. Am. Chem. Soc. **73**, 373 (1951).
- ⁷ L.T. Zhuravlev, Langmuir **3**, 316 (1987).
- ⁸ R.F.S. Lenza and W.L. Vasconcelos, Mater. Res. 4, 189 (2001).
- ⁹ R. Al-Oweini and H. El-Rassy, J. Mol. Struct. **919**, 140 (2009).
- ¹⁰ C. Knöfel, C. Martin, V. Hornebecq, and P.L. Llewellyn, J. Phys. Chem. C 113, 21726 (2009).
- ¹¹ H. Hamdan, M.N.M. Muhid, S. Endud, E. Listiorini, and Z. Ramli, J. Non-Cryst. Solids 211, 126 (1997).

FIG. S2. Powder X-ray diffraction patterns of mesoporous nanoparticle-based silica samples S1 and S2, mesoporous sol-gel silica samples S3 and S4, and mesoporous ambigel silica samples S10 and S12. Patterns shifted upwards for clarity by 0, 1000, 2000, 3000, 4000, and 5000, respectively.